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Uncertainty Estimation and
Calibration of Operational Flumes

Flumes are humble but essential components of F3agace flow
measurement systems. Their theoretical performance is well studied
but reaHife installation conditions may differ from standards, thus
creating a calibration need. To achieve this calibration, either physical
experiments or computer simulations are performed. On this
presentation, we describe flumes, what they are and what they do, the
methodology employed on the CFD simulations and present the
statistical approach used to quantify the uncertainty on the CFD results.
The latter analysis thus allows us to conclude that CFD is, on this
particular application and as long as the simulation methodology does
not depart from the established begtractice, sufficient as a means to
allow engineers to tackle redfe, operational, flumes calibration.
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VenturiFlumes: description

AA Venturi flume is a criticaflow open flume with a _
constrictedpassage whichauses a drop in the hydraulic

grade Ilne, Creatlng a. CritiCdbpthhttps://en.Wikipedia.orq/wiki/Venturi flumé

A stable relationship between backwater levaidpassing flowate
A independent of the downstream level up a certainlimit

TYPICAL VENTURI FLUME FLOW RATE CURVE
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https://en.wikipedia.org/wiki/Venturi_flume
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Flumesand the global market

Alts general conception allows for an infinite number of shape variations
ArSadz GAYy3I Ayiz2z +ty AYFAYAGS ydzyo SNI 21

ANormalizations exist, but it is quite commop/ / /5“
to encounter designs and/or installation ¢ | S
conditions beyond their scope: \
AFlow rate range;
ADesign shape (designs piating normalization, o s4

Width = 1795 mm Width = 1766 mm

etc.); - —

ASuboptimum installation conditions (upstream__ VR
disturbances, installation defects, etc.). st 53 s

. . Width = 1775 mm Width = 1785 mm Width = 1775 mm
A Control point location




sue2 Y blue

n FE/T{'DYNAMH:S company

Motivation

AOn multiple occasions, the authors have come across with the Samigiri
design, established before normalization, by a particular manufacturer:
A Calibated by physical model (a long time ago);
A Industrializedon multipledimensions through Froude similitude
A Applied on a flow rate range beyond limits of existing normalization (for the given shape)

ADifferent particulatities on some of these instalation instances brought the need
for the application precision to be verified

Al 2y FINRY Gl GAZ2Y 2F GKS Yl ydzZFl OGdzZNBENXRa 1 ¢ oA

AThis presentation focus on one of such simulations, performed with-SOAR
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The bigger picture

Ahy SIFOK /C5 lylfearas 0KS YAYAYdzY aS\
limiting the number of simulations performed (often, between 5 and 10 different
flow rates).

...but, 10 here plus 10 there...

+

the power of similitude

...and the spirit of CFD resulsuseis brought to life.




The bigger picture

AEmpowered with roughly 50 simulations (some
performed by the authors, and some performed |

others)

AAchieve a higher confidence on the simulatio ,

m_ 2.5

results

AAggregataeal life variability into aneasureof
uncertainty(each instance having its particula
deviation from optimum conditions

-mls

flow rate
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ALL CFD SIMULATION TOGETHER
(1.000 m throat equivalent)

10
d

upstream water height - m

Beingsold on the market for several decades, we can only imagine how many other
simulations, or real installation physical calibration, were performed, on this same

shape, that could further feed thanalysis.
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CFD methodology

AFollows physical and geometrical
characteristics:

A Free surface flow
A Volume of Fluid

A Open Channel Structure
A Anisotropic mesh

A Turbulent flow
A Wall treatment (can be rough)

AFluid properties are known in
general, with the possibility of not
naving upto-date surface tension
iInformation when the fluid is non |
[ JdzNB gl USNJ | Yy R U
condition is unknown.

3/6/2017 9
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CFDmethodology Meshing

Free surfaceanisotropicrefinement

Cellssize 0.02m

AMatches

A Anisotropic interests
A wall (layers)

A Freesurface
A Approximate location depends on flow rate

A Area variations

A Inlet/outlet boundary regions
A Location Venturi region: isotropicrefinement

Cellssize 0.10m

A Refinement level Cellssize: 0.05m

ANumber of cells typically varies by one
order of magnitude (from 200k to 2M)

A Automatic adaptive refinement can be
Implemented in STARCM+.

3/6/2017
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CFDmethodology Analysis

ASolver

A NavierStokes
A Segregated

A Dedicated transport equation to
Volume of Fluid

AHRIC for surfaceapturing 6 "®
ed O  R2dza G SR (2 «a

A Transient (sadly!)
AFlatwave initialization

AConvergence is achieved
A Mass balance |
A Stable free surface height at control it e N

3/6/2017 11
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CFD results single case
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CFD results single case

Section 1

3/6/2017
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CFD results single case
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CFD results ensemble
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Application: a measurement of uncertainty

AVenturiflume upstream level to flow rate relationship
A the typically used model 5.0
A as an alternative, here we will see the results through the eyes of quantile regression

QUANTILE REGRESSION ENVELOPES

1.25F hd

(T 2 3
flowRate = o. - 3.72767 | -8.+22.391h-20.8898 h? - 6.49645 h 1.671865h51.66779] ~
\

[,6 True 190
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upstream level - m

3,6,2OA The majority of the CFD results are less than 3% away from the regression iy
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Application: a measurement of uncertainty

SUPPLIERS TABLE vs QUANTILE REGRESSION MODEL
M | | |

AComparing suppliers curve (table) 1 . |
with the quantile regression model ¢ .~ —

AThe classicdl.n model(all CFD simulationiecluded) and its comparison with
the quantile regression model

a.h? vs QUANTILE REGRESSION MODEL
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Application: the scope

AMeasurement uncertainty is not a constant along the range

AHaving the occurrences distribution allows for the correct evaluation
of the error on a specific application

AThe uncertainty of the total measured volume will be analyzed here,
as it is one fundamental value of concern (end product bill).
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Application: the results

ARoughly 50 simulations of 5 different models were simulated with two
different CFD tools
AThe quantile regression model fits data better than the classical one

A Although there are CFD simulations deviated more than 5% from this model,
the overall is within the 3%

AEven considering the entire range of simulated results (the previous
envelope), when applying to site data, the deviation is below 3%.

{97.2097%, 102.502% }



Conclusions
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AThe importance of data reuse

AAggregatingeal life variabi
AReverse engineering real

Ity Into a measure of uncertainty
Ife conceptions with straightforward CFD

AQuantifyinguncertainty wit

N real world data



